
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 664
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A New Algorithm to Find Longest Common Sub-
sequence’s
Arindam Kotal#, K.K.Senapati*

Abstract— In the study of pattern matching, string matching is an important topic and also an important component in the application of
computer science. The Longest Common Subsequence (LCS) problem is to find a subsequence which is common to at least two or more
given sequences. The sub- sequence which has the largest length is the longest common subsequence. This paper describes a new algo-
rithm to find the longest common subsequence between two strings. In this paper we introduce two pruning operations which improve the
speed up of the algorithm. The proposed algorithm emphasizes on the optimization of the running time & improvement of time complexity
against the existing well-known improved dynamic programming algorithm for LCS. The further significance of this algorithm is that this al-
gorithm can also be applied in multiple sequences. The comparison between the performance of the proposed algorithm with pruning and
without pruning operations has also been analysed.

Keywords — Algorithm ,Dynamic programming, DNA Sequences, Longest Common Subsequence, Pruning Operations, Multiple se-
quence, String Matching.

—————————— ——————————

1 INTRODUCTION

Pattern matching or String matching is one of the oldest &
fundamental areas in the application of computer science. So-
lution to the problem plays an important role in many areas of
science & information processing. Sequence comparison is an
important tool in molecular biology as it can be used to com-
pare two or more given sequences. This application is particu-
larly useful when studying the relationships of similar type of
gene products. Any sequence can be represented as sequence
of symbol over a fixed alphabet Ʃ. In biological sequence this
sequence is a sequence of nucleotides. A protein sequence is a
sequences of 20 characters (amino acid) & DNA sequence
(gene) is combination of sequences of four characters
Ʃ=(A,C,G,T) & RNA sequence is a combination of four charac-
ters Ʃ=(A,C,G,U) [15].

Let S & T be two sequences over some fixed alphabet Ʃ. The

sequence T can be a subsequence of S or vice versa if T can be
obtained by deleting some letters/characters/nucleotides from
S, without violating the order of sequence of letters in S. The
length of the subsequence is the number of letter in it. A long-
est common subsequence is a subsequence which has the
longest length among the possible sub sequences & is the
common one between two sequences. When a new biological
sequence is discovered, this sequence has to be verified as a
new sequence or homologous. It helps to find the exact DNA
sequences matching, in retrieval of information like
parenthood, genetic disorder, medicine, etc.

Our paper is organized as follows. The section 2 discusses

some related LCS algorithms. The new algorithm including
the pruning steps followed by suitable example is explained in
section 3. Then in section 4 describes the pseudo code of the
proposed algorithm. The analysis & comparison part is given
in section 5 and the paper is concluded with a discussion &
future scope in section 6.

2 RELATED WORKS
For two DNA sequences, let X & Y each of length m and n.

The popular algorithms are:

In 1974 Wagner and Fischer [1] published an algorithm

which solves for Levenshtein distance with dynamic pro-
gramming. The Levenshtein distance is an important concept
to find out edit distance between two sequences. Levenshtein
distance is a count of how many substitutions, insertions, and
deletions are required to change one string to another string.
To break down the Levenshtein distance problem, Wagner
and Fischer used a matrix solution. Given two strings, place
one string down the left side of the matrix, Place the other
across the top of the matrix. The last cell of the matrix was
cumulative distance between the two strings. It was also the
length of the LCS between the two given sequences. This algo-
rithm did not give the LCS. In this algorithm as each character
of left string was needed to compare against each character of
top string only once, the time complexity of the algorithm was
O (mn).

In 1975 Hirschberg [2] employs a divide-and-conquer strat-

egy, which consists of recursively breaking the problem into
smaller independent sub problems, solving the sub problems
directly and combining their solution to solve the whole prob-

————————————————
#Arindam Kotal is currently pursuing Masters’ degree program in Com-
puter Sc. &Eengineering in BIT Mesra, India, PH-08051124869. E-mail:
arindam.kotal@gmail.com
*K.K.Senapati is an Assistant Professor in the depertment of Computer Sc.
& Enginnring in BIT Mesra, India, PH-09431768348. E-mail:
kksenpati@bitmesra.ac.in.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 665
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

lem. So, this model follow the divide conquer model. It was ac-
tually the combination of divide conquer & dynamic method.
In the first phase it searches the matrix from the forward direc-
tion but in the second phase it searches the matrix from re-
verse direction. Although the space complexity of the algo-
rithm is reduced to O (m) but the time complexity of the algo-
rithm was O (mn). Later in 1977 Hirschberg [3] gives another
approach based on the dominant matches. The complexity of
this algorithm is O (rn+nlogn) where r is the total number of
ordered pairs of positions at which the two strings match.

In 1977 J.W. Hunt and T.G. Szymanski’s [4] approach to ex-
tracting an LCS from two strings is equivalent to determining
the longest monotonically increasing path in the graph com-
posed of nodes (i; j) such that xi = yj. Whereas previous meth-
ods required quadratic time in all cases, their algorithm re-
quires O ((r + n) log n) time for equal length strings. A small
amount of pre-processing vastly improved the performance of
the algorithm. The main source of inefficiency in this algo-
rithm is the inner loop on which repeatedly searches for the
elements of the Y sequence which match X[i]. Link List tech-
niques avoids this problem.

Naktasu ET all [5] gave quite different solution. In this case,
the LCS is found by checking systematically, how long com-
mon subsequence can be found for Y and the substring
X[C...i]. That is, starting from X[i], we select consecutive sym-
bols from X and traverse Y from ri ght to left searching for
matches until all of Y has been used up. These results are then
combined cleverly to obtain the LCS. The search is terminated
as soon as we know that the suffix of X [l...i] cannot give us
any better results. Because of this, the method executes fast if
the LCS is long; its theoretical time complexity is O (n (m -
r)).But this algorithm is only suitable for similar texts.

In 1987 Apostolico, A. & Guerra, C.[7], They introduced an
alternate date structures to support the forming of the LCS:
close vector is a compact representation of the closest table
defining for each symbol of ∑ its nearest occurrence in Y after
a given position j. The time complexity of their algorithm is O
(mlogn+dlog (2mn/d)) where d is the minimum distance of the
next closest common elements.

In 1990 Wu ET all [8] minimized the edit distance problem to
compressed edit distance. The compressed edit distance was
sticker to the close main diagonal. Here instead of calculating
the true edit distance, they are concentrated to reduce the
number of deletion. Thus, the algorithm executes quickly
when the shorter input string is a substring of the other. This
algorithm has the time complexity of O (n (m-r)).

In 1995 Rick, C [9] published an algorithm which simple &
efficient compared to the previous discussed algorithm. The
algorithm was based on advancing from contour to contour.
Contour is a region where the matching values are found & it
was bounded by broken lines [10]. The algorithm is based on
the well-known paradigm of computing dominant matches

and was obtained through a kind of dualization. Its time com-
plexity was O (min {(rm), r (n-r)}).

The most well-known algorithm to find LCS between two
strings is the improved dynamic programming algorithm [13].

A DNA sequence is viewed as a linear sequence of a1, a2, a3...
am of nucleotide. The sequence is known as primary structure.
Each aᵢ is identified with one of the four nucleotides i.e. A, T,
G, C. The LCS problem has an optimal substructure property.
 Let, A= (a1, a2, a3... am) and B= (b1, b2, b3…, bn) be sequences.
Let Z= (z1, z2, z3…, zᵢ) be any LCS of A & B. This property had
the three following cases:
1. If am = bn, then zᵢ= am= bn and Zi-1 is an LCS of Am-1 and Bn-

1.
2. If am≠ bn, then zi ≠ am implies that Z is an LCS of Am-1 and

B.
3. If am ≠ bn, then zi ≠ bn implies that Z is an LCS of A and Bn-

1.
The optimal substructure of the LCS problem tells us that an
LCS of two sequences contains within it an LCS of prefixes of
the two sequences.

From this optimal substructure property we can find an LCS
of two sequences. If am= bn, we must find an LCS of Am-1 and
 Bn-1. If am≠ bn, we have to solve two sub problems: finding an
LCS of Am-1 and B and finding an LCS of A and Bn-1. The long-
est LCS between this two sub problems is the LCS of two se-
quences.

Let us define C [i, j] to be the length of the LCS of the sequenc-
es Ai and Bj. If i=0 or j=0 i.e. one of the sequence has length 0,
then, the LCS become zero length also. The optimal substruc-
ture gives the recursive formula:

 C [i, j] =

≠>−−

=>+−−
==

ji

ji

baandjiifjiCjiC
baandjiifjiC

joriif

0,],1[],1,[max(

0,1]1,1[
000

3 OUR METHOD

All the methods mentioned above are based on matrix. Our
method uses a heuristic approach for determining the LCS of
two sequences. Our approach is to find out the relative posi-
tions of all the matching pairs. This is done in the pre-
processing phase. Only once the proposed method is searched
the two given DNA sequences & collect all the possible match-
ing pairs. As all the matching pairs are not necessary to find
the LCS, we delete some matching pairs by only identifying
those pairs. This is done by the introduction of two pruning
operations. The method can be easily understood theoretically
& experimentally.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 666
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

We define Ʃ as a sequence of four nucleotides Adenine (A),
Thiamine (T), Guanine (G), and Cytosine(C).

The proposed method based on the following steps:
Step1: Find out all the possible matching pairs between the

two sequences.
Step2: Among the matching pairs, choose those pairs which

have contain the same elements. Prune the pairs which have
repeated elements & the 1st element of the set should be great-
er than the 1st element of the other set.

Step3: Among the existing matching pairs find out the sum
of each pairs & sorted them in increasing order. Sum is calcu-
lated as follows:

X= S1+ S2 Where S1and S2 refers to the sequence being used.
Step4: Identify the pairs which are having the same sum,

find out the difference between the elements of the same sum
& select the pairs which are having minimum differences &
prune others. The difference is calculated as follows:

Y= | S1- S2|
Step5: From the remaining matching pairs find out the pairs

which are having the minimum sum and select the corre-
sponding character as the character in the LCS of the two se-
quences.

Step6: Delete those pairs whose elements contain less than
or equal values compared to the elements of selected matching
pairs. This process continues until all the matching pairs are
exhausted.

Pruning Operations:
In the process of generating pruning technique, it can be im-
plemented to remove those matching pairs which can’t gener-
ate the LCS .It leads to reduce the search space & complexity &
increase the efficiency.
Pruning Operation1: If on the same level, find out those
matching pairs contained the duplicate elements, prone the
character corresponding to those duplicate matching pairs
whose first elements have greater value compared to the se-
lected pair’s first elements.
The reason for pruning character corresponds to duplicate
matching pairs is as follows. Let the identical character set is
Pn= (s1, s2) and this set Pn is repeated as (s2, s1). So, (s1, s2) or
(s2, s1) represents the same character. It is unnecessary to re-
peat the set which contained same elements. So, select one
pair. The selection should be done by the comparison of the
first elements. If s1< s2 then select the character corresponding
pair (s1, s2) & prune the others. If the process selects the other
set then some matching pair’s sets are deleted and as a result
LCS is not coming. Because of this select the pair whose first
element has less value.

Pruning Operation2: Identify those pairs which are having
same sum, then select the character correspond to the pair
which are having minimum differences between its elements.
Prune the character correspond to the other pairs.

Working Example:
For example consider two input sequences:
 1 2 3 4 5 6 7 8 9
S1 = T G C A T A A T T

S2 = T A G T G T A T G

1. Step1: Matching Pairs: Deleted

p[1]=(1,1) p[9] =(4,7) p[17]=(7,7)
p[2]=(1,4) p[10]=(5,1) p[18]=(8,1)
p[3]=(1,6) p[11]=(5,4) p[19]=(8,4)
p[4]=(1,8) p[12]=(5,6) p[20]=(8,6)
p[5]=(2,3) p[13]=(5,8) p[21]=(8,8)
p[6]=(2,5) p[14]= (6,2) p[22]=(9,1)
p[7]=(2,9) p[15]=(6,7) p[23]=(9,4)
p[8]=(4,2) p[16]=(7,2) p[24]=(9,6)
p [25] =(9,8)

Step2:
Apply pruning operation1 and find that matching pair’s p[4]
and p[18] contained the same elements, prune pair p[18].

Step3:
p [1] = X = 1+1 = 2 p [13] = X = 5+8 = 13
p [2] = X = 1+4 = 5 p [14] = X = 6+2 = 8
p [3] = X = 1+6 = 7 p [15] = X = 6+7= 13
p [4] = X = 1+8 = 9 p [16] = X = 7+2 = 9
p [5] = X = 2+3 = 5 p [17] = X = 7+7 =14
p [6] = X = 2+5 = 7 p [18] = X = 8+4 =12
p [7] = X = 2+9 = 11 p [19] = X = 8+6 = 14
p [8] = X = 4+2 = 6 p [20] = X = 8+8 = 16
p [9] = X = 4+7 = 11 p [21] = X = 9+1 = 10
p [10] = X = 5+1 = 6 p [22] = X = 9+4 = 13
p [11] = X= 5+4 = 9 p [23] = X = 9+6 = 15
p [12] = X = 5+6= 11 p [24] = X = 9+8 = 17
Step4, 5, 6:
Here pruning operation2 is also applicable and find the dif-

ference between the elements of those pairs which have same
sum.

p [3] and p [6] have same sum.
Y1 = |1-6| = 5
Y2 = |2-5| = 3
According to pruning operation2 p [3] is pruned.
p [7], p [9] and p [12] have same sum.
Y1 = |2-9| = 7
Y2 = |4-7| = 3
Y3 = |5-6| = 1
p [7] and p [9] are pruned.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 667
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In the same way,
p [8] & p [10], p [10] is pruned.
p [2] & p [5], p [2] is pruned.
p [4], p [11] and p [16], p [4] & p [16] are pruned.
p [13], p [15] and p [22], p [13] & p [22] are pruned.
p [17] & p [19], p [19] is pruned.

Remaining Matching pairs:
p [1] = (1, 1) p [9] = (7, 7) minimum
p [2] = (2, 3) p [10] = (8, 8)
p [3] = (2, 5) p [11] = (9, 1) delete
p [4] = (4, 2) p [12] = (9, 6)
p [5] = (5, 4) p [13] = (8, 4)
p [6] = (5, 6) p[14] = (9,8)
p [7] = (6, 2)
p [8] = (6, 7)
Select the character correspondence to p[1] as its sum is

minimum.
S1 = T G C A T A A T T
S2 = T A G T G T A T G
LCS= T……………..
As pair p [11] has already visited, that’s why it is deleted.
This process is continued till the sequence is exhausted.

2. Remaining Matching Pairs:
 Sum Sum
p [1] = (2, 3) 5 p [8] = (7, 7) 14
p [2] = (2, 5) 7 p [9] = (8, 8) 16
p [3] = (4, 2) 6 p [10] = (9, 6) 15
p [4] = (5, 4) 9 p [11] = (8, 4) 12
p [5] = (5, 6) 11 p [12] = (9, 8) 17
p [6] = (6, 2) 8
p [7] = (6, 7) 13
Here p [1] is selected as minimum pair which has minimum

sum and select the character correspondence to it. p [2], p [3],
p [6] are deleted as their elements are already visited.

S1 = T G C A T A A T T
S2 = T A G T G T A T G
LCS= T G…………..

3. Remaining Matching Pairs:
p [1] = (5, 4) 9
p [2] = (5, 6) 11
p [3] = (6, 7) 13
p [4] = (7, 7) 14
p [5] = (8, 8) 16
p [6] = (9, 6) 15
p [7] = (8, 4) 12
p [8] = (9, 8) 17

S1 = T G C A T A A T T
S2 = T A G T G T A T G

LCS= T G T…………..
4. Remaining Matching Pairs:

p [1] = (6, 7) 13
p [2] = (7, 7) 14
p [3] = (8, 8) 16
p [4] = (9, 6) 15
p [5] = (9, 8) 17

S1 = T G C A T A A T T
S2 = T A G T G T A T G
LCS= T G T A………..

5. Remaining Matching Pairs:
 Sum
p [1] = (8, 8) 16
p [2] = (9, 8) 17

S1 = T G C A T A A T T
S2 = T A G T G T A T G
LCS= T G T A T
Here p [1] is selected as minimum pairs and p [2] is deleted

as its one of the elements is already visited. The character cor-
responding (8, 8) is selected as the character of LCS.

As the sequences are exhausted, the process is terminated.
Length of the LCS is 5.

4 THE ALGORITHM

Pre-processing Phase:
FindMatchPairs (p []) //let p is the set for all matching
pairs
Input: I [1...m] & J [1…n] are two DNA sequences

1. m length(I);
2. n length(J);
3. a=0;
4. for i=0 to m-1
5. for j=0 to n-1
6. if (I[i]==J[j])
7. P[a]=(I[i],J[j]);
8. a++;
9. end if
10. end for
11. end for
12. return p[a];

Pruning Phase:
PruningOperation1 (p, a)
Input: The set of matching pairs i.e. p
 1. r = 0, count = 0; //initialize
 2. for i=0 to a-1
 3. P[i] = FindMatchPairs (p[a]);
 4. for j=0 to r-1
 5. if ((I[i] == J[j]) && (J[i] == I[j]))
 6. break;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 668
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 7. End for
 8. if (j==r)
 9. P[count] = (I[i], J[j]);
 10. end if
 11. end for
 12. return p [count];

PruningOperation2 (P, count)
Input: Remaining set of matching pairs i.e. p

1. for i=0 to count-1
2. X[i]= sum (I[i],J[i]);
3. end for
4. for i=0 to count-1
5. if (X[i]== X[i+1])
6. Y[i]= abs (I[i] – J[i]);
7. Set Ymin= MIN(Y[i]);
8. end if
9. end for
10. return Ymin

Implementation Phase:

Compute LCS ()
Input: The set of remaining match pairs i.e. p [1, 2… n]

1. for i=0 to n-1
2. X[i]= sum(I[i], J[i]);
3. Set L[i] = MIN(X[i]);
4. Select the pair corresponding L[i], say A[i], B[i]
5. Remove the matching pairs.

// which are <= relative position of A[i] & B[i]
6. End for
7. For i=0 to n-1
8. Store the character corresponding to A[i] & B[i] in an

array says LCS[i]. //output
9. End for

5 ANALYSIS AND RESULT
The aim of the algorithm is to find out the LCS between two
large sequences. In addition to this the algorithm also finds
out LCS between multiple DNA sequenced with large length,
even manually. This is possible because of taking the relative
position of each character.
Analysis of the proposed algorithm is based on three phases.
In the pre-processing phase, it will take O (n^2) time to find
the identical character sets from the two given DNA sequenc-
es. The subsequent phase which is known as the pruning
phase also take O (n^2) time. The final phase of computing
LCS will take O (n) time because the length of the matching
pairs is n. The desired result is achieved by a linear time com-
plexity, compared to a quadratic order complexity [13].

In terms of total time complexity without the distinction of
pre-processing phase & pruning phase/operation the time
complexity lies between O (n^2) to O (n^3) according to the
best & worst case analysis.
 The number of identical character set is reduced by the two
pruning operations. Pruning techniques removed those
Identical character sets which could not able to generate LCS.
Thus the speed up is achieved and search space also reduced.

 We implemented our algorithm in DEV-C++ 4.9.9.0 on a
2.67GHz processor with 3GB RAM on a windows7 operating
system. The DNA sequences data’s are taken from the FASTA
format [16].

To find out the effect of pruning, we took the identical two
sequences with increasing length and we got a decent amount
of speedup using the pruning approach. The comparison has
been shown in Fig. 1. We also compare our new algorithm
with pruning with the improved dynamic programming [13].
The comparison has been shown in Fig. 2.

TABLE I
Pruning effect

Sequence length Time with pruning Time without pruning

10 0.001 0.093
20 0.002 0.218
30 0.004 0.359
40 0.005 0.50
50 0.007 0.765
60 0.010 0.967

TABLE II

Comparison with improved dynamic programming

Sequence length Time with New

Algorithm
Time with Improved Dynamic

Programming
10 0.001 0.003
20 0.002 0.004
30 0.004 0.005
40 0.005 0.007
50 0.007 0.009
60 0.010 0.012

Fig. 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 669
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig. 2

6 CONCLUSIONS AND FUTURE WORK
This paper has given a simple and novel approach for find-

ing the LCS from sequences of DNA, protein etc. It has been
examined that this algorithm has also been able to find LCS
from multiple sequences of DNA, protein etc. We feel that
there are still some scope to improve the time complexity and
performance of our approach through different data structure
such as heap for finding minimum sum.

REFERENCES
[1] R. A. Wagner and M. J. Fischer, The string to string correction prob-

lem, J.ACM, Vol.21, No. 1, 1974, pp.168-173.
[2] D. S. Hirschberg: A linear space algorithm for computing maximal

common subsequences. Commun. ACM, 18(6):341–343, 1975.
[3] D.S. Hirschberg , Algorithms for the Longest Common Subsequence

 Problem, J.ACM, Vol.24, No.4, October1977, PP. 664-675.
[4] J.W. Hunt & T.G.Szymanski, A Fast Algorithm for Computing Long-

est Common Subsequences, Comm. ACM, Vol. 20, NO. 5, 1977, pp.
350-353.

[5] N. Nakatsu, Y. Kambayshi & S .Yajima : A Longest Common Subse-
quence Algorithm Suitable for Similar Texts, Acta Informatica,
vol.18, 1982, pp.171-179.

[6] E.W. Myers: An O (ND), Difference Algorithm and its Variations,
Algorithmica, Vol. 1. 1986, pp. 251-266.

[7] A.Apostolico & C.Guerra: The Longest Common Sub-sequence Prob-
lem Revisited, Algorithmica, No. 2, 1987, pp. 315-336.

[8] Wu, S., Manber, U., Myers, G. & Miller, W.: “An O (NP) Sequence
Comparison Algorithm”, Inf. Proc. Lett., Vol. 35, September 1990,
pp. 317-323.

[9] C. Rick: A New Flexible Algorithm for the Longest Common Subse-
quence Problem, in Galil, Z. & Ukkonen, E. (eds): Proc. of Combina-
torial Pattern Matching, 6th Annual Symposium, Espoo,
Finland, July 1995, pp. 340-351. Appeared also as Lectures Notes in
Computer Science, vol. 937.

[10] S .Kuo & G.R .Cross, An Improved Algorithm to Find the Length of
the Longest Common Subsequence of two Strings, ACM SlGlR Fo-
rum, Vol. 23, No. 34, 1989, pp.89-99 .

[11] L. Bergroth, H. Hakonen, and T. Raita, A survey of longest common
subsequence algorithms, Proceedings Seventh International Sympo-
sium on String Processing and Information Retrieval. SPIRE 2000, 39
– 48.

[12] SAM Rizvi, P. Agarwal, A New Index-Based Parallel Algorithm for
finding Longest Common Subsequence in Multiple DNA Sequences.
International Conference in Cognitive Systems, 2005.

[13] T. H. Corman, R L. Rivest, Charles E.Leiserson, C.Stein, “Dynamic
Programming”, Introduction to Algorithm, Third Edition, Cam-
bridge, MA: MIT Press, 2010, Ch. 15, sec. 15.4, pp.390-397.

[14] D. Gusfield, “Core Strings Edits, Alignments, and Dynamic Pro-
gramming”, Algorithms on Strings, Trees, and sequences, Cam-
bridge, Cambridge University Press, 1999, Ch. 11, pp. 215-295.

[15] P. A. Pevzner & N. C. Jones.: An Introduction to Bioinformatics Algo-
rithms, MIT press, MA, 2004, pp.61-63.

[16] FASTA format - http://www.neb.com/nebecomm/tech_reference/

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related works
	3 Our method
	4 the Algorithm
	5 Analysis and result
	6 Conclusions and future work
	References

